IDYLLWILD WATER DISTRICT

Newsletter and Consumer Confidence Report

Summer 2015

We have provided each customer with the enclosed removable insert that provides information regarding the quality of water that you received from the Idyllwild Water District during 2014. Last year's water quality report (Consumer Confidence Report) has met all state and federal regulations. IWD operates two water facilities. The first treatment process is our aeration facility, which receives water directly from our wells at the Foster Lake area. This facility aerates the deep well water to prevent any corrosion in our water system as well as our customer's plumbing. The well water then progresses to our second iron and manganese filtration plant. This plant improves the taste of the well water with disinfection and by removing iron and manganese before it is pumped into the six Foster Lake reservoirs where it gravity feeds into the distribution system and into your household tap. Idyllwild Water District works diligently to provide its customers a safe and high quality water. Our well water from the Foster Lake wells is both purified by aeration and filtered to provide better quality water than some bottled water. comparison our water costs are .012 cents per gallon of water or just over one cent per gallon of water. Imagine how much you can save compared to the price of bottled water.

Dry Foster Lake

The District uses Foster Lake to recharge water naturally by percolating water underground, which maintains the groundwater levels to the surrounding Foster Lake wells. We receive water directly from Lilly Creek into Foster Lake. Our other source for Foster Lake is stream water that is diverted and pumped across town into the Lake. This is Strawberry Creek water, which is the sole source of creek water for protecting our Foster Lake wells during drought situations. Foster Lake has been dry and we have not diverted water from Strawberry Creek for years due to drought. Water on the hill is a precious resource and it takes all of us working together to conserve and to protect the quality of our groundwater.

The District is dedicated to preserving our watershed and sustaining our environment, now and well into the future. In the past few months, the District has rehabilitated our horizontal lines, and older vertical wells to increase water production, and added a new tank for additional water storage capacity. These efforts will provide additional production capacity which cushions against extended drought. To hold IWD pumping costs to a minimum, we have recently upgraded the inverters for our solar array to reduce our dependence and costs from So. Calif. Edison. Saving water and power is essential to ensure we have sustainable supplies for the future.

IDYLLWILD WATER DISTRICT 2014 Consumer Confidence Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2013 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Name & location of source(s):	Water in 2014 was supplied from 11 out of our 24 wells located in the Idyllwild area.
Drinking Water Source Assessn	nent information: Completed in 2002, 2006,2007 and can be reviewed in our office at

25945 State Hwy. 243-Idyllwild, CA or online at http://swap.des.ucdavis.edu/tsinfo/tssources.asp?mysystem=3310019

Time and place of regularly scheduled board meetings for public participation: Third Wednesday of the month

IWD Boardroom at 6:00 p.m.-25945 State Hwy. 243-Idyllwild, CA

Type of water source(s) in use: Groundwater

For more information, contact: **Steven Kunkle** Phone: (951) 659-2143

The following tables list all the drinking water contaminants that we detected for the 2014 calendar year. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done January 1 through December 31, 2014. The state requires us to monitor for certain contaminants less than once a year because the concentrations of these contaminants are not expected to vary significantly from year to year. Some of the data, though representative of the water quality, may be from more than one year of sample results.

Sampling Results Showing Detection of Lead and Copper

Lead and Copper	No. of samples collected	90 th percentile level detected	No. of sites exceeding AL	AL	PHG	Typical source of contaminant
Lead (ppb)	10	0.0074	None	15	2	Internal corrosion of household water plumbing systems; erosion of natural deposits.
Copper (ppm)	10	0.45	None	1.3	0.17	Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives.

Sampling Results for Sodium and Hardness

Chemical or constituent	Sample date	Level detected	Range of detections	MCL	PHG/ MCLG	Typical source of contaminant
Sodium (ppm)	2011-2013	15	8.5 - 22	none	none	Generally found in ground and surface water.
Hardness (ppm)	2011-2013	36	23 - 65	none	none	Generally found in ground and surface water.

Detection of Disinfectant Byproducts

Chemical or constituent	Sample date	Highest Running Annual Average	Range of detections	MCL [MRDL]	PHG/ (MCLG) [MRDLG]	Typical source of contaminant
Chlorine (ppm)	2013	1.01	0.73 - 1.21	[4.0 (as Cl ₂)]	[4.0(asCl ₂)]	Drinking water disinfectant added for treatment
Total Trihalomethanes (TTHMs) (ppb)	2013	14	14	80	n.a.	By-product of drinking water disinfection

Haloacetic Acids						By-product of drinking water
(HAA5) (ppb)	2013	9.2	9.2	60	n.a.	disinfection

Detection of Contaminants with a Primary Drinking Water Standard

Chemical or constituent	Sample date	Level detected	Range of detections	MCL	PHG/ (MCLG)	Typical source of contaminant
Gross alpha activity (pCi/L)	2006-2013	1.097	0.205-4.24	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	2005-2013	0.46	0.002-1.23	20	.43	Erosion of natural deposits
Fluoride (ppm)	2011-2013	0.13	< 0.1-0.2	2.0	1	Erosion of natural deposits
Nitrate (ppm)	2013	3.0	<2.0 - 27	45	45	Leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Aluminum(ppm)	2011 - 2013	< 0.05	<0.05 - 0.21	1	0.6	Erosion of natural deposits

Detection of Contaminants with a Secondary Drinking Water Standard

Detection of Contaminants with a Second					Ly Dilliking Water Dianuaru			
Chemical or	Sample	Level	Range of	MCL	PHG/	Typical source of		
constituent	date	detected	detections		MCLG	Contaminant		
Total dissolved	2011-2013	117	66-170	1000	n.a.	Runoff/leaching of natural deposits.		
solids (ppm)								
Chloride (ppm)	2011-2013	6.7	2.3 - 18	500	n.a.	Runoff/leaching of natural deposits.		
Sulfate (ppm)	2011-2013	2.1	0.50 -4.9	500	n.a.	Runoff/leaching of natural deposits.		
Specific						Substances that form ions when in		
Conductance	2011-2013	145	99-230	1600	n.a.	water/ sea water influence.		
Turbidity (units)	2011-2013	1.0	0.20 - 4.8	5	n.a.	Soil runoff		
Aluminum (ppb)	2011-2013	< 50	<50 - 210	200	n.a.	Erosion of natural deposits		
Iron (ppb)	2011-2013	<100	<100 - 120	300	n.a.	Leaching from natural deposits		
Foaming Agents								
(MBAS) ppb	2011-2013	< 50	<50 - 80	500	n.a.	Municipal and Industrial waste		
						discharges		
Zinc (ppm)	2011-2013	< 0.05	< 0.05-0.065	5.0	n.a.	Runoff/leaching of natural deposits		
Manganese(ppb)	2011-2013	< 0.02	<0.02 - 23	50	n.a.	Leaching from natural deposit		

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals that are by-products of
 industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff,
 agricultural application, and septic systems.
- Radioactive contaminants that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. <u>Idyllwild Water District</u> is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Terms and abbreviations used in the tables are as follows;

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standard: MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Regulatory Action Level (AL): The concentration of a contaminant which, when exceeded, triggers treatment or other requirements that a water system must follow.

n.a.: not applicable

N.D.: not detectable at testing limit

ppm: parts per million or milligrams per literppb: parts per billion or micrograms per literpCi/L: picocuries per liter (a measure of radiation)

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791).

IWD ENHANCEMENTS

The Governor's Office of Emergency Services has declared a statewide drought emergency and has imposed restrictions on all California residents to reduce water consumption by 25%. We think this can be accomplished by restricting outside landscaping irrigation to two days a week. Therefore, in compliance with State guidelines we are asking all customers to reduce outside landscape irrigation to no more than twice per week.

The District is doing all it can to minimize the effects of the drought on our customers. We have taken many positive actions to keep our systems functioning efficiently, keep our costs low and insure our sustainability. These actions have included the following:

- Upgrading and adding to our water storage capacity with the new Goldenrod and Tollgate tanks with a combined storage of 500,000 gallons.
- Upgraded and improved the efficiency of our solar power production by replacing our old power inverter with improved efficiency of 5%.
- Rehabilitated and restored production of our horizontal wells and several vertical wells. These wells had been inactive for years and they are now restored and capable of increasing our water production by approximately 20%.
- We have received approval from the state for a \$2,045,000 award to construct a water recycling system for our wastewater. The project includes improving our existing sewer plant from secondary treatment to tertiary treatment and installing over 10,000 feet of distribution lines that will enable us to use treated water for landscape irrigation.
- We have submitted further grant applications for several additional projects which will improve water production, make additional infrastructure improvements and upgrade our existing systems to contain costs and enhance our system performance.
- We are reviewing our policies and regulations to insure they are consistent with new state guidelines.
- We have been able to reduce our insurance premiums and cost overhead in an effort to keep customer rates low.
- We have undertaken a comprehensive review of our energy consumption in conjunction with a consultant and So. Calif. Edison. They have provided us with new protocols and procedures for operating our various pumps and motors in more efficient fashion potentially saving 20% 25% of energy costs.

INSERT PICS OF: Tollgate Tank completed; New solar Inverters; Sewer Effluent Line Construction; Horizontal Well

IDYLLWILD WATER DISTRICT 25945 HIGHWAY 243 P.O. BOX 397 IDYLLWILD, CA 92549-0397 PRSRT STD AUTO U.S. POSTAGE PAID San Jacinto, CA Permit No. 51

Board of Directors

Jim Billman, President John Cook, Vice President Warren Monroe, Director Mike Freitas, Director Dean Lattin, Director

Help Us Save Water

- Stop Leaks Check appliances and outside systems such as sprinklers for leaks. Get to know your water meter it provides important information about consumption and leaks. Common leaks waste 10% of the water used in many homes.
- Replace Old Toilets Toilet flushing is the top water user in the home. If you haven't replaced your toilet in 10 years or more, you'll benefit from the new high efficiency models. Check the internal flapper for leaks by adding a little food coloring to the tank. If the colored water shows up in the toilet bowl-it's time to replace the rubber flapper.
- Buy an efficient Clothes Washer Washers are the second-largest water user in the home. New "Energy Star" certified models use 50% less water and energy per load.
- Visit our website @www.idyllwildwaterdistrict.com.

Some of the above suggestions can save \$200.00 per year in water and energy costs. If you need more information, call us at (951) 659-2143.